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ABSTRACT

Over the decades the role of observations in building and/or improving the fidelity of a model to a

phenomenon is well documented in the meteorological literature. More recently adaptive/targeted ob-

servations have been routinely used to improve the quality of the analysis resulting from the fusion of data

with models in a data assimilation scheme and the subsequent forecast. In this paper our goal is to develop

an offline (preprocessing) diagnostic strategy for placing observations with a singular view to reduce the

forecast error/innovation in the context of the classical 4D-Var. It is well known that the shape of the cost

functional as measured by its gradient (also called adjoint gradient or sensitivity) in the control (initial

condition and model parameters) space determines the marching of the control iterates toward a local

minimum. These iterates can become marooned in regions of control space where the gradient is small. An

open question is how to avoid these ‘‘flat’’ regions by bounding the norm of the gradient away from zero.

We answer this question in two steps. We, for the first time, derive a linear transformation defined by a

symmetric positive semidefinite (SPSD) Gramian G5FTF that directly relates the control error to the

adjoint gradient. It is then shown that by placing observations where the square of the Frobenius norm of F

(which is also the sum of the eigenvalues of G) is a maximum, we can indeed bound the norm of the adjoint

gradient away from zero.

1. Introduction

Judicious selection of the type (pressure, humidity,

and wind, to name a few) and placement (the location

within a given spatiotemporal domain of interest) of

weather observations to advance understanding of a phe-

nomenon and the concomitant practical ability to improve

forecasts has a rich history in meteorology. Among the

most celebrated use of weather observations to understand

the ubiquitous extratropical cyclone was the fieldwork

of Scandinavianmeteorologists Jacob Bjerknes and Eric

Palmén (Bjerknes and Palmén 1937). They organized

the simultaneous release of 120 radiosondes from 11

European countries over a 2-day period that led to di-

agnosis of motions in the upper troposphere along a

3500-mi (5630-km) latitudinal cross section. Further,

the study made it clear that the meridional gradient of

the Coriolis parameter was an important parameter

in the dynamics of upper waves. This revelation inspired

Carl-Gustaf Rossby to derive his celebrated wave for-

mula (Eliassen 1995).

In the spirit of the Bjerknes–Palmén study, but in our

current day, the use of research aircraft to obtain ther-

modynamic and wind structure in the vicinity of Atlantic

hurricanes throughuseofOmegadropwindsondes (ODWs)

has gone far to improve the track forecasting of hurri-

canes (Burpee et al. 1996). Transmission of these data to

operational prediction centers in real time permittedCorresponding author: S. Lakshmivarahan, varahan@ou.edu
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inclusion of these data into the operational models. The

improvement in track forecasting as tested on numerous

hurricanes was impressive—track error reductions from

16% to 30%. Also impressive was the hurricane fore-

casting experience of the Burpee team that led them

to choose observation locations on the hurricane’s pe-

riphery as well as near the storm’s center where the

thermodynamic and wind data were critically important

as input to track forecasting. Majumdar (2016) and

Majumdar et al. (2011) present an excellent review of

‘‘targeted observations,’’ which classified the Burpee

et al. (1996) as an example of targeting based on syn-

optic reasoning—not only an appropriate label for this

contribution but also for the earlier contribution by

Bjerknes and Palmén (1937).

Starting from the mid-1990s there has been a

growing body of work within the meteorological lit-

erature related to (i) the analysis of impact of initial

condition and observation on a chosen scalar metric

related to forecast quality (over a subdomain or the

entire domain of interest) and (ii) targeted/adaptive

observation aimed at finding the type of a new set

of observations that will bring improvement to fore-

cast quality, such as, reduction of analysis covariance,

and (iii) when there is a large amount of correlated

set of observations (as may happen with satellites or

radars), there has been great interest in the so-called

‘‘thinning’’ and/or creating superobservations by com-

puting, say, an average over a given subdomain and

associating that observation with the centroid of the

subdomain.

The techniques used in these areas may be broadly

divided into two groups: either based on the adjoint

approach rooted in the classical variational analysis or

using one of the many ensemble implementations of

Kalman filtering approach to data assimilation. While

much of the literature concentrates on the choice of the

suitable type of observations to improve the forecast

quality, a few also consider distribution of observation

to answer a similar goal.

Specifically, Berliner et al. (1999) examine the ap-

plication of statistical experimental design (Cochran

and Cox 1992) to adaptively decide on supplementary

observations that would improve the analyses. Torn

and Hakim (2008), Ancell and Hakim (2007, hereafter

referred to as AH2007), and Hakim and Torn (2008)

use ensemble methods for targeting observations.

AH2007 also contains a comparison of the adjoint

based and ensemble based approaches to observation

targeting. Lorenz and Emanuel (1998), Langland et al.

(1999), Langland and Baker (2004), Evans et al. (1998),

Koch et al. (2018), Manohar et al. (2018), Kotsuki et al.

(2019), Majumdar et al. (2011), and Majumdar (2016)

contains extensive discussion of ‘‘thinning,’’ creating

superobservations, targeted-observation strategies in-

cluding adjoint sensitivity, forecast sensitivity to obser-

vations, ensemble transform filter method, and ensemble

sensitivity. All these strategies are designed to improve

analyses and ultimately reduce forecast error.

Our approach falls outside the strategies used in

targeted/adaptive observations although the goal has

strong overlap with those methodologies. It is assumed

that we have observations of a given type represented

by a vector Z in the observation space Rm. It is well

known that when the model map M and/or the forward

operator h (that relates the observation to the state) are

nonlinear, the cost functional may exhibit multiple

minima (Lewis et al. 2006, example 24.4.1 in chapter

24). In addition to these intrinsic multiple minima that

are purely dependent on the given nonlinearities in M

and h, and the covariance matrix of the observational

noise, the shape of the cost functional in the control

space (consisting of initial conditions and model pa-

rameters) is also critically dependent on distribution

(location) of the observations in the state space. Our

goal is to control the shape of the cost functional by

analyzing the dependence of its gradient (with respect

to the control) on the (spatiotemporal) location of the

observations. Namely, force the magnitude of this gra-

dient to be bounded away from zero outside the intrinsic

local minimum.

This is achieved through a strategy that decides on

observation placement in space and time but in the

context of classical four-dimensional variational data

assimilation (4D-Var) (LeDimet and Talagrand 1986;

Lewis and Derber 1985). It is well known that the shape

of the cost function as measured by its gradient in con-

trol space determines the marching of the control iter-

ates toward a local minimum of the cost function. The

iterates of the minimization algorithm can become

marooned in regions where the gradient is very small.

An open question is how to avoid these ‘‘flat’’ regions in

control space by guaranteeing that the norm of the

gradient of the cost function is bounded away from zero.

While much of the earlier work deal with sensitivity of

the cost functional only with respect to the initial con-

ditions alone, our analysis simultaneously deals with

initial conditions and parameters on the same footing.

This question is answered in two steps. First, we

derive a linear transformation defined by a symmetric

positive semidefinite (SPSD) Gramian1 G5FTF that

maps the error in the control to the gradient of the cost

1 If A 2 Rm3n, then the symmetric matrices AAT and ATA are

known as Gramian of A.
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functional alias adjoint sensitivity or gradient,2 where

the component matrix F is the product of 1) the for-

ward sensitivity of the model solution, 2) the Jacobian

of the forward operator and 3) the square root of the

inverse of the covariance matrix of the observation

noise. Refer to Fig. 1 for illustration. It is then shown

that by placing observations where the square of the

Frobenius norm of F attains a maximum, we can in-

deed bound the norm of the adjoint gradient away

from zero.

In section 2, we provide a short summary of the

forecast error correction problem by relating the adjoint

sensitivity or adjoint gradient to the innovation or

forecast error. By relating this forecast error to the

model’s forward sensitivity, we derive our main results

in section 3. The intrinsic relation that exists between the

adjoint sensitivity and the control error is further ana-

lyzed in section 4. The impact of observation placement

on controlling the shape of the cost functional is ana-

lyzed in section 5. Two examples are considered in

section 6: an air–sea interaction problem in time alone,

and Saltzman’s (1962) more complicated nonlinear

model of convection in space and time. Both examples

exhibit the methodology’s avoidance of flat gradients

in control space. Section 7 contains recommendations

for placement of observations and concluding remarks.

Appendix A contains mathematical details that are key

to the analysis in sections 3–5. The Gramian structure of

G is developed in appendixB. In the short appendix C, we

further illustrate the difference between our approach

and a typical adjoint sensitivity analysis in AH2007.

2. Forecast error correction problem

a. Model equations

Let x(k)5 [x1(k), x2(k), . . . , xn(k)]
T 2 Rn be the state

of a nonlinear, deterministic, discrete time dynamic model

at times k 5 0, 1, 2, . . . . Let a 5 (a1, a2, . . . , ap)
T 2

Rp be the vector of p model parameters and let M:

Rn 3 Rp / Rn denote the (one-step state transition)

model map where M(x, a) 5 [M1(x, a), M2(x, a), . . . ,

Mn(x, a)]
T 2 Rn. Let

x(k1 1)5M[x(k),a] (2.1)

be the given dynamical system whose solution starting

from an initial state x(0) denotes the model forecast.

Let x(k) 5 x[k, x(0), a] denote the solution of (2.1).

Since the pair c 5 [xT(0), aT]T 2 Rn 3 Rp controls the

evolution of x(k), it is known as the control. It is tacitly

assumed that the model in (2.1) is the best knownmodel

for the process in question and is suitably parameterized

to capture the inherent natural variations. Clearly, si-

multaneous estimation of the initial conditions and pa-

rameters in dynamic data assimilation puts this par with

the goals and methods used in the ‘‘adaptive control’’

literature (Narendra and Annaswamy 2005).

b. Observation

Let z(k) 2 Rm be the vector observation at time k

given by

z(k)5 h[x(k)1 j(k)] , (2.2)

where h:Rn/ Rm and h(x)5 [h1(x), h2(x), . . . , hm(x)]
T 2

Rm is called the forward operator that relates the

model space Rn and the observation space Rm; x(k) is

the true but unknown state of nature at time k and j(k);
N[0, R(k)] is a zero mean, temporally uncorrelated,

Gaussian noise with R(k) 2 Rm3m as its covariance

matrix at time k. It is assumed that R(k) is known and

positive definite in addition to being symmetric. In the

case that the forward operator is linear, (2.2) takes the

form z(k) 5 Hx(k) 1 j(k) where H 2 Rm3n is a matrix

that takes model output and converts it to the model’s

counterpart of the observations.

c. Assumption

It is assumed that the model map M in (2.1), the for-

ward operator h in (2.2) and the model solution x(k)

are continuously differentiable in their arguments. That

is, the following Jacobians are well defined for all x,

a, and k $ 0:

FIG. 1. A pictorial view of the linear relation g5Gf between f5
dc, the error in the initial in control c and g52=cJ the negative of

the gradient of the cost function J(c), where G5FTF. The com-

ponent ĝ is the orthogonal projection of g along f. That is,

ĝ5 f̂ ĥf, gi5Pfg, where f̂ is the unit vector along f and Pf is the

orthogonal projection matrix along f.

2 The term adjoint sensitivity or gradient derives its name from

the adjoint method used to compute it. Refer to Lewis et al. (2006,

chapters 22–25) for details.
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d. Innovation/forecast error

Let z(k) be a single observation given at time k. The

difference

e(k)5 z(k)2h[x(k)] (2.4)

is called the innovation or the forecast error. Refer to

Fig. 2 for an illustration.

e. A classification of forecast errors

For the purposes of our analysis in this paper, it is

useful to classify the forecast errors into three types

(Lakshmivarahan and Lewis 2010; Lakshmivarahan

et al. 2017). Type 1 error is said to occur when the model

is assumed to be perfect and the true control c5
[xT(0),aT]T is known. In this case, x(k)5 x(k) and the

forecast error is temporally uncorrelated and is a pure

Gaussian noise that cannot be controlled. Type 2 error

occurs when the model is perfect, but the control c dif-

fers from the true but unknown control c. In this case,

the forecast error e(k) depends only on the control error,

dc 5 [dxT(0), daT]T and

dx(k)5 x(k)2 x(k) for k$ 0, da5a2a . (2.5)

Type 3 error is said to occur when the model is not

perfect and the true control is not known. In this

case, the forecast error is confounded by the unknown

model error and the unknown control error. In this pa-

per, we confine our analysis to the simpler case of type

2 errors. Estimation of type 3 errors is contained in

Lakshmivarahan et al. (2013).

f. Statement of the problem

The forecast error correction problem is usually recast

as the minimization of the weighted sum of squared

error criterion. To this end, define a cost functional J:

Rn 3 Rp / R given by

J(c)5 ke(k)k2R21(k) 5
1

2
he(k),R21(k)e(k)i , (2.6)

where ha, bi denotes the standard inner product. Again,

we hasten to add that if prior information on either the

initial condition X(0) or the parameter a or both is

available, we could add a quadratic penalty term to the

cost function, which will contribute another term in the

expression for adjoint sensitivity.

Since e(k) depends on the forecast x(k) that in turn

is a function of the control c, the cost functional is

an implicit function of c through the given model

Eq. (2.1). We hasten to add that since the cost func-

tional is additive in the number of observations, with-

out loss of generality, it is assumed that there is only

one observation z(k) 2Rm at time k. This constrained

minimization problem is usually solved as a strong

constraint problem using the standard Lagrangian

multiplier method. The resulting framework has come to

be known as the adjoint method (see Lewis et al. 2006,

chapters 22–24).

3. Fine structure of adjoint sensitivity

Instead of determining the adjoint sensitivity through

use of the tangent linear model as typically done in the

standard 4D-Var mechanics (see Lewis et al. 2006,

chapter 24), we derive an alternate expression for dx(k)

in terms of the forecast sensitivity to control and the

associated incremental change in control.

FIG. 2. x(k) is the true but unknown state x(k) of the model at

time k starting from the true but unknown control c5 [xT(0),aT]T.

x(k) is the model forecast at time k starting from the erroneous

initial control c5 [x(0),aT]T 6¼ c. dx(k)5 x(k)2 x(k) is the first

variation in the model state at time k indicated by the first

variation dc 5 [dxT(0), daT]T, where dx(0)5 x(0)2 x(0) and

da5a2a. z(k) is the observation at time k that contains in-

formation on x(k) through the relation z(k)5h[x(k)]. The forecast

error e(k)5 z(k)2h[x(k)] .
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a. Alternate expression for dx(k)

The first-order Taylor expansion for dx(k) is given by

dx(k)5U(k)dx(0)1V(k)da , (3.1)

where the dynamics of evolution of the forward sen-

sitivity matrices U(k) and V(k) defined in (2.3b) are

given in the following (see Lakshmivarahan et al. 2017,

chapters 2 and 3):

U(k1 1)5D
M
(k)U(k) , with initial condition,

U(0)5 I , (3.2)

V(k1 1)5D
M
(k)V(k) 1Da

M(k), with initial condition

V(0)5 0: (3.3)

b. An alternate expression for the forecast error e(k)

Using (2.2), we get an expression for the actual fore-

cast error as

e(k)5 z(k)2 h[x(k)]5 h[x(k)]2 h[x(k)]1 j(k) . (3.4)

But using the expression for dx(k) in (2.5), a first-order

approximation e(k) to e(k) is given by

e(k)5 h[x(k)1 dx(k)]2h[x(k)]1 j(k)

5D
h
(k)dx(k) 1 j(k) , (3.5)

where the Jacobian Dh(k) 2 Rm3n is given in (2.3a).

Further, substituting (3.1) in (3.5) and regrouping, we

get an alternate expression for e(k) as

e(k)5A(k)dx(0)1B(k)da1 j(k) , (3.6a)

where A(k) 5 Dh(k)U(k), B(k) 5 Dh(k)V(k).

Indeed, the correction dc to the control c needed to

reduce the forecast error (modulo observation noise)

can be readily obtained by solving a linear least squares

problem (Lakshmivarahan et al. 2017, chapter 2) ob-

tained by rewriting (3.6a) as

e(k)5S(k)dc1 j(k) , (3.6b)

where S(k) 5 [A(k), B(k)] 2 Rm3(n1p).

Remark 3.1: In the 4D-Var framework, the adjoint

sensitivity is computed using the actual forecast error,

e(k) in (3.4). Refer to chapter 24 in Lewis et al. (2006)

for details. However, in this alternate approach, we used

the first-order approximation e(k) in (3.5). When h(x) is

linear, that is, h(x)5Hx, then e(k)5 e(k). This alternate

method for quantifying the forecast error is known as

the first-order forward sensitivity method (FSM) and is

closely related to the 4D-Var formulation. For details

refer to Lakshmivarahan and Lewis (2010) and the

monograph Lakshmivarahan et al. (2017).

c. Fine structure of adjoint sensitivity

It can be verified that the exact first variation dJe in

J(c) resulting from the initial variation dc in c is given by

(see Lewis et al. 2006, chapter 24)

dJ
e
52hDT

h (k)R
21(k)e(k), dx(k)i. (3.7)

Replacing e(k) in (3.7) by e(k), we get an approximation

dJ to dJe given by

dJ52hDT
h (k)R

21(k)e(k), dx(k)i. (3.8)

Substituting e(k), S(k), A(k), and B(k) from (3.6)–

(3.7) and dx(k) from (3.1) and regrouping, we express

dJ as the sum of the deterministic component, dJd and

the stochastic component dJn, which are given as

follows:

dJd 52hH(k)[U(k)dx(0)1V(k)da],

[U(k)dx(k)1V(k)da]i, (3.9a)

dJn 52hDT
h (k)R

21(k)j(k), [U(k)dx(0)1V(k)da]i.
(3.9b)

Define a symmetric matrix

H(k)5DT
h (k)R

21(k)D
h
(k) 2 Rn3n (3.10)

that depends only on the observation system. Again,

collecting the like terms and simplifying, it is immedi-

ate that

dJd 52hUT(k)H[U(k)dx(0)1V(k)da], dx(0)i
2hVT(k)H[U(k)dx(0)1V(k)da], dai (3.11a)

and

dJn 52UT(k)DT
h (k)R

21(k)j(k), dx(0)

2 hVT(k)DT
h (k)R

21(k)j(k), dai. (3.11b)

From first principles,3 we can readily identify that the

gradients of J:

=
x(0)

J(c)52[UTHU]dx(0)1 [UTHV]da2UTHj(k) ,

(3.12a)

3 If f: Rn / R is continuously differentiable, then df 5 =f, dx

(Lewis et al. 2006, appendix C).
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=
a
J(c)52[VTHU]dx(0)1 [VTHV]da2VTHj(k) ,

(3.12b)

where

H(k)5DT
h (k)R

21(k) 2 Rn3m . (3.13)

These relations clearly bring out the impact of inter-

action resulting from simultaneous variation of both the

initial condition and the parameters and the observation

noise covariance on the adjoint sensitivities.

Setting

=
c
J5

"
=
x(0)

J

=
a
J

#
and dc5

�
dx(0)

da

�
,

(3.11)–(3.13) can be succinctly expressed as

=
c
J5=

c
Jd 1=

c
Jn, =

c
Jd 52[FTHF]dc and

=
c
Jn 52FTH(k)j(k) , (3.14)

where

F5 [U,V] 2 Rn3(n1p), FT 5

"
UT

VT

#
2 R(n1p)3n (3.15)

and

FTHF5

"
UT

VT

#
H[U,V]

5

"
UTHU UTHV

VTHU VTHV

#
2 R(n1p)3(n1p) (3.16)

is the outer product matrix, which inherits the Gramian

structure alluded to in the introduction. Stated in other

words, there exists a linear relation between dc, the

error in the control to the deterministic part of the

adjoint gradient, =cJ
d, and a linear relation between

the observation noise j(k) and the stochastic compo-

nent =cJ
n. This new expression for the adjoint sensi-

tivity clearly brings out (i) the role of the model

through the forward sensitivities U and V on one hand,

and (ii) the role of the observation system through

H5DT
hR

21Dh on the other. Indeed, this separability of

the effect of the model and the observation system

clearly provides the ‘‘fine structure’’ of adjoint sensi-

tivity that, to our knowledge, is hitherto unknown in

the literature.

Remark 3.2: The standard assumption about the ob-

servation noise j(k) is that it is zero mean, temporally

uncorrelated, Gaussian with R(k) as its covariance at

time k; that is, j(k);N[0,R(k)]. Hence, from (3.14), the

expected value and covariance (Cov) are given by

E(=
c
J)5=

c
Jd (3.17)

and

Cov(=
c
J)5E[(=

c
Jn)(=

c
Jn)

T
]

5FTHRHTF5FTDT
hR

21(k)D
h
F

5FTHF (3.18)

using (3.10) and (3.13). Henceforth, following the tra-

dition in statistical physics (Tolman 2010), we invoke

the principle of mean field analysis and concentrate

only on the deterministic component =cJ
d of the ad-

joint gradient. For simplicity in the notation, in the

following, we identify =cJ with =cJ
d. Further, appendix C

clearly brings out the difference between the approach

of this paper and a typical adjoint sensitivity analysis

AH2007.

4. A tale of two vectors: dc and =cJ—Further
analysis

An immediate import of the above analysis is the

deviation of the simple but key relation in (3.14) where

the matrix FTHF, that maps the control space R(n1p) of

unknown control error vector dc into the spaceR(n1p) of

the adjoint sensitivity =cJ.

As a prelude to further analysis, let us further simplify

the notation by defining the following equivalences:

g52=
c
J, f5 dc and G5FTHF: (4.1)

Consequently, form (3.14) we obtain a fundamental

relation

g5 Gf . (4.2)

Remark 4.1: An estimate of the Hessian of J(c) at the

minimum: It is well known that if A is an SPD matrix

and b is a vector, then =Q(x) 5 Ax 2 b if and only

if Q(x) 5 (1/2)xTAx 2 bTx 1 d for some arbitrary

constant d (Meyer 2000; Lewis et al. 2006, chapter 10).

From (4.1) and (4.2), we get =cJ52Gf52G(c2 c)5
Gc2 b where b5Gc. Combining these two facts, we

can locally approximate J(c) around c by a qua-

dratic functional given by J(c)5 (1/2)cTGc2 bTc.

Hence, the Hessian of J(c) is given by =2J(c)’
=2J(c)5 G5FTHF, which by (3.18) is also the covari-

ance of =cJ. Clearly, this Hessian is independent of the

observation and its condition number controls the

shape of J(c).
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The meaning and the power of this new relation in

(4.2) is captured in Fig. 1 from which it is evident

that we can express g as the sum two orthogonal

components:

g5 ĝ1 ĝ? , (4.3)

where ĝ is the orthogonal projection of g along f

and ĝ? 5 g2 ĝ.

Thus, when we use g routinely in the minimization

of cost functional in the 4D-Var method (Lewis et al.

2006, chapters 22–24), it is now clear from Fig. 1 that it

is not g, but only its component ĝ that is responsible for

bringing the reduction in the value of the cost functional

and hence the forecast error. An important question is:

what factors affect the magnitude of ĝ? The 4D-Var

framework is silent on this question. Consequently, we

now introduce a new measure for the effectiveness of

an observation.

Definition 4.1: An observation z(k) 2 Rm at time k is

said to be effective if the magnitude of the orthogonal

projection kĝk is large. If kĝk is small, then the obser-

vation is said to be ineffective.

It turns out that kĝk can be small due to two mutually

exclusive reasons. First, taking the norm of both sides of

(4.2) and using (4.3), it is immediate that

kĝk# kgk# kGkkfk . (4.4)

Hence, if the magnitude of the elements Gi,j, of the

matrixG are simultaneously small, then kGk is small and

hence kĝk is small.

Stated in other words, if we place the observations in

locations where the model is least sensitive, then from

(4.4) it follows that the norm jjgjj is small in and around

these locations the cost functional has flat patches in the

control space Rn1p. Consequently, if kĝk is small, then

the gradient method will bring very little improvement

to forecast quality.

There is yet another situation where kĝk can be very

small. This happens when the control error vector f lies

either in the null space4 of G or very close to it. In such

cases, g is either orthogonal or nearly orthogonal to f

and so ĝ is very small even if kgk is large.

It is against this backdrop, we describe a frame-

work in appendix A that directly relates the spectral

properties of the matrix G and its attendant impact

on ĝ.

Since f is unknown but a constant vector, from (A.19)

we get a basic relation:

kĝk
kfk5�

i

d
i
y2i $ min

y2
i
6¼ 0

fy2i g
�
�
i

d
i

�
. (4.5)

From (A.20), we can express

�
i

d
i
5 tr[G]5 tr[FTF]5 kFk2F , (4.6)

which is the Frobenius norm of F.

Combining (4.5) and (4.6), it is now clear that we can

maximize kĝk by maximizing the Frobenius norm of the

sensitivity matrix F and this is independent of f.

In the following section 5, we systematically explore

the conditions for maximizing kĝk using (4.5) and (4.6).

5. Impact of observation placement

In exploring the properties of the projection ĝ and

consequently the shape of the cost functional J(c)

through dependence of its gradient on the forward

sensitivities, we now move to analysis of expressions in

(3.12)–(3.16).

Case 1: x(0) is varied and a is held constant.

In this case, da 5 0 and from (3.14)–(3.16) and

appendix B,

g52=
x(0)

J5 [UTHU]dx(0)5 [UTU]dx(0) . (5.1)

Case a: m $ n and Rank(UTHU)5 n (Meyer 2000).

Then NULL(UTHU)5 f0g.
From (4.5) and (4.6), it follows that

kĝk
kfk$min

y2
i
6¼ 0

fy2i g�
j

kU*jk
2kU*jk

2 , (5.2)

where U*j is the jth column of U and y 5 (y1, y2, . . . ,

yn)
T 2 Rn are coordinates of dx(0) in the orthogo-

nal basis formed by the eigenvectors of the

Gramian UTHU. In (5.2), while we do not have

any control over the magnitude of y0is, we can

maximize the first factor on the right-hand side

of (5.2) by placing the observations where the

sum of the squares of the norms of the columns of

U is a maximum.

Case b: m , n and rank (UTHU)5m. Then

NULL(UTHU) has dimension (n 3 m). For any dc

in this null space, g [ 0.

Again from (4.5) and (4.6), it is immediate that

kĝk
kfk$min

y2
i
6¼ 0

fy2i g�
j

kU*j
k2 . (5.3)

The second factor on the right-hand side of (5.3) can

be maximized by placing the observations where the

4 Let A 2 Rn3n, then the null space NULL(A) of the matrix A is

a subspace of Rn consisting of all vectors x 2 Rn such that Ax 5 0.
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sum of the squares of the norms of the first m columns

of U is a maximum.

Case 2: a is varied and x(0) is held constant.

In this case dx(0) 5 0 and from (3.14)–(3.16),

g52=aJ5 [VTHV]dawhere we recall from appendix B

that VTHV5VTV 2 Rp3p. Again, two cases arise de-

pending on rank (VTHV)5 p or rank (VTHV), p. In the

latter case, the null space ofVTHV has dimension greater

than or equal to one and for any dc in this null space,

g [ 0.

From (4.5) and (4.6), it can be verified that

kĝk
kfk$min

y2
i
6¼ 0

fy2i g�
j

kV*j
k2 . (5.4)

By placing the observations in the time interval

where the sum of the squares of the norms of the

matrix is a maximum, we can enforce or guarantee a

nonzero lower bound on the norm of the adjoint

gradient.

Case 3: Both x(0) and a are varied.

In this case, from (3.14)–(3.16), we get

g52=
c
J5 (FTHF)5 (FTF)dc . (5.5)

From (4.5) and (4.6), we get

kĝk
kfk$min

y2
i
6¼ 0

fy2i g
�
�
i

d
i

�
. (5.6)

Hence, by placing observations in the time intervals

containing the maximum of the sum of the square of the

norms of the columns of FT, we bound the norm of ĝ as

far away from zero as is feasible.

As a guide to applying the theory developed above,

we summarize the key steps as follows.

Algorithm for the placement of observations

Step 1: Pick a control c 5 [xT(0), aT]T and run the

model (2.1) forward in time to generate the fore-

cast trajectory x(k) for k 2 [0, T] for some

large T . 0.

Step 2: Compute the Jacobians: DM(k), D
a
M(k) and

Dh(k) in (2.3) along the trajectory in step 1.

Step 3: Compute the evolution of the forward sensi-

tivity fieldsU(k) and V(k) using linear, time-varying

dynamics in (3.2) and (3.3).

Step 4: Compute G 5 FTHF using (3.15) and (3.16).

Step 5: Plot the variation of one of the following

norms versus time: (i) kGk2F, (ii) kG*jk2, or

(iii) G2
ij.

Step 6: Identify small-time intervals containing the

maxima in the plots generated in step 5. By sorting

the values of these maxima in the decreasing order,

we can then determine the number and location of

the observations.

Clearly, those time intervals containing the max-

imum of one or more of the quantities in step 5 of the

algorithm given above are the preferred locations

for the placement of observations. The idea is that,

if for any reason if we cannot place an observa-

tion at the maximum, we have the additional lever-

age of placing it close to it within a small interval

containing it.

6. Two examples

In this section, we illustrate the theory developed

in the previous sections using two examples. First is

the 1D problem of air–sea interaction (Lakshmivarahan

and Lewis 2010) where the control consists of initial

and boundary conditions and a parameter. The second

is the now famous example of the Saltzman’s 7D

lower-order model for convection called SLOM (7).

TABLE 1. Sensitivity of the solution of Eq. (6.1).

Sensitivities Expression

U 5 ›x(t)/›x(0) e2bt

V1 5 ›x(t)/›xs 1 2 e2bt

V2 5 ›x(t)/›b hte2bt

F [U, V1, V2] 2 R133

FTHF (1/s2)

U2 UV1 UV2

UV1 V2
1 V1V2

UV2 V1V2 V2
2

2
64

3
75

›J/›x(0) 5 2g1 2(1/s2)[U2dx(0) 1 UV1dxs 1 UV2db]

›J/›xs 5 2g2 2(1/s2)[UV1dx(0)1V2
1dxs 1V1V2db]

›J/›b 5 2g3 2(1/s2)[UV2dx(0)1V1V2dxs 1V2
2db]

FIG. 3. The base solution x(t) of (7.1) starting from the base con-

trol c5 [x(0), xs, b]
T 5 (1:0, 11, 0:25)T.
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It is not out of place to mention that it is the initial

analysis of SLOM (7) in Saltzman (1962) provided the

key idea and the impetus to the discovery of the now

famous Lorenz LOM (3) (Lorenz 1963) exhibiting

deterministic chaos (Lorenz 1993, p. 137). Refer to the

recent paper by Lakshmivarahan et al. (2019a) for

more details on the relation between Saltzman (1962)

and Lorenz (1963).

a. Air–sea interaction problem: 1D model

Let n 5 1 and p 5 2. Let a 5 (xs, b)
T 2 R2 be the set

of two parameters. Consider the 1D model equation:

dx(t)

dt
5b[x

s
2 x(t)] , (6.1)

with x(0) as the initial condition. The control vector c5
[x(0), aT]T 2 R3.

This model describes the dynamics of evolution of

the normalized temperature x(t) of the cold continental

air as it moves with the prevailing wind over the warm

ocean that is assumed to have a constant sea surface

temperature xs. Clearly, xs denotes the boundary con-

dition and b is known as the turbulent heat exchange

parameter. See Lakshmivarahan and Lewis (2010) for

more details.

The solution of (6.1) is given by

x(t)5 x[t, x(0), x
s
,b]5 [x(0)2 x

s
]e2bt 1 x

s
5 x

s
2he2bt ,

(6.2)

where h 5 xs 2 x(0). Exact expression for the forward

sensitivitiesU, V1, V2, the matrix FTHF, and expressions

for the components of the adjoint sensitivities are given

in Table 1.

A plot of the base solution x(t) of (6.1) starting from

the base control c5 [x(0), xs, b]5 (1:0, 11, 0:25)T is

given in Fig. 3. In this and the rest of the figures, the

discrete time k corresponds to the continuous time t 5
kDtwhere Dt5 0.1. Let c5 [x(0), xs, b]

T5 (2.0, 10, 0.3)T

FIG. 4. Forecast x(t) using (7.1) starting from the control

c 5 [x(0), xs, b]
T 5 (2.0, 10, 0.3)T.

FIG. 5. Evolution of the forward sensitivities (a) U, (b) V1, and (c) V2 given in Table 1 starting from the base control c as in Fig. 4.

FIG. 6. Evolution of the inner product of F in Table 1 and a fixed

dc 5 (21.0, 1.0, 20.05)T.
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be control for the forecast and the model forecast

x(t) using (6.1) starting from c is plotted in Fig. 4.

Evolution of forecast sensitivities of solution of (6.1)

for the same initial condition as in Fig. 4 are given

in Fig. 5.

Variation of the inner product of the time varying

(row) sensitivity vector F in Table 1 and the constant

control error vector f5 dc5 c2 c, with time is given

in Fig. 6. It can be verified from Fig. 6 that at time close

to t* ’ 4.4, the sensitivity vector F is orthogonal to dc

as indicated by the vanishing of the inner product.

That is, dc at this time instant lies in the null space of

the rank-one, symmetric matrix, G5FTHF given in

Table 1. The plot of the variation of the norm of the

gradient, jjgjj that is given in Table 1 is again illus-

trated in Fig. 7. Clearly, jjgjj vanishes at t*’ 4.4 and is

small in its neighborhood.

Variation of the square of the individual forward

sensitivitiesU, V1, and V2 in Table 1 with time are given

in Fig. 8. Clearly U2 is a maximum close to the initial

time and V2
1 attains its maximum value when t is large.

But V2
2 attains its maximum at time t** ’ (1/k) 5 3.33

(since b 5 0.3 is used for forecast). Hence by placing

three observations at times, say at times t1 5 1, t2 5 20,

and t3 5 3.3, we can capture information on the initial

condition x(0), boundary condition xs and the parameter

b. Combining (4.6) with expressions in Table 1, it can

be verified (assuming s2 5 1) that tr(G)5 tr(FTHF)5
U2 1V2

1 1V2
2 . Since U, V1, and V2 vary in their magni-

tude, to bring out the key features in the sum, a plot of

the scaled version: (1/50)(U2 1V2
1 1V2

2 ) against time is

contained in Fig. 9. One can pick an equivalent set of

three-time instances using this plot in Fig. 9 for placing

observations.

We conclude this discussion by reporting the results

of two experiments in Table 2. In the first experiment,

four observations are chosen at times where the

sensitivities are large and in the second where the

sensitivities are small. The entries in the last column

of Table 1 clearly illustrate the theory developed in

this paper.

b. Application to Saltzman’s Model: SLOM (7)

The strategy for numerical experiments follows the

‘‘identical twin’’ approach where two sets of model

controls are specified—in this case of Saltzman’s

spectral model, the Rayleigh number (Rayleigh 1916)

and the model’s initial condition. One set is labeled

‘‘true control’’ and the other set, purposely made

different than those for the true state is labeled

‘‘forecast control.’’ Variational data assimilation is

used to correct the forecast control and bring it closer

to true control. The theme of the experiment is to

choose observation points that guarantee avoid-

ance of ‘‘flatness’’ of the cost function in the space

of control. The choice of these points rests on the

foregoing theory that identifies a matrix and its trace.

The location of these points is based on a two-part

process:

FIG. 7. Variation of the norm of adjoint gradient in Table 1 with

time of observation.

FIG. 8. Time evolution of U2, V2
1 , and V2

2 given in Table 1.
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1) PART 1: CHOICE OF LOCATION

(i) Stage 1: Controls specified

The true control c and forecast control c are specified.

The evolution of the true state and forecast state are

followed for a sufficiently long time to note differences

in the convective regimes (as in step 1 of the algorithm in

section 5).

(ii) Stage 2: Determination of forecast sensitivities
and associated G matrix

Forecast sensitivities to control, c are found through

solution to the augmented set of governing equations for

Saltzman’s model. From these sensitivities and the

forward operator [see section 6b(4) below]—the

operator that determines the model counterpart to

observations—the G matrix and tr(G), are deter-

mined. In the computation of G and its trace, only the

forward sensitivities to control and model counterpart

of the observations are used, actual observations are

not needed.

(iii) Stage 3: Observation placement

Observation locations are chosen in the (x, z, t) space

where centroids of large values of tr(G) are the ideal

locations.

2) PART 2: SUBSEQUENT DATA ASSIMILATION

(i) Stage 4: Cost function J

The cost function J is defined as the sum of squared

differences between the observations and the associated

forecasts at the points in time and space where obser-

vation locations are chosen (observations at that point in

time are based on true control and forecasts are based on

erroneous control).

(ii) Stage 5: Variational data assimilation

The variational data assimilation method is used to

adjust control and bring forecast control closer to true

control.

Remark 6.1: Knowledge of the sensitivities found in

step 2 allows calculation of cost-functional gradient

without adjoint equations—an alternate method of

4D-Var. This alternate method is used in the numerical

experiments that follow.

3) GOVERNING EQUATIONS

Saltzman (1962) assumed a seven-mode spectral

model of convection that obeys the Boussinesq (1903)

equations describing ‘‘roll’’ convection between two

free surfaces maintained at constant temperature dif-

ference. Convection takes place in a thin layer of fluid

heated from below. The convective motions take place

in the x–z plane; that is, there is no variation in the

y direction where x and y represent the horizontal

Cartesian axes. The vertical coordinate z is perpendicular

to the horizontal plane (positive upward). The mo-

mentum, mass, and thermodynamic equations can be

reduced to two equations in vorticity and temperature

departure—departure from the linear base-state tem-

perature profile. These equations are found in Saltzman

[1962, Eqs. (16) and (17)].

A double Fourier series form of spectral solution is

assumed with three streamfunction modes and four

temperature departure modes that are given in Table 3.

Saltzman used an alphabetic representation for the

seven spectral amplitudes (A, B, . . . , G), (section 7 in

FIG. 9. Evolution of the sum of U2, V2
1 , and V2

2 given in Table 1.

TABLE 2. Two experiments about the air–sea interaction problem.

No. of

observations

Time of

observation jjdcjj
g, ĝ, and angle

u between them

4 1, 2, 9, 10 (large

sensitivities)

1.4151 g 5 23.689

ĝ521:254

u 5 708
4 4.5, 4.6, 4.7, 4.8

(small sensitivities)

1.4151 g 5 20.1849

ĝ520:0014

u 5 89.578

TABLE 3. Seven spectral components of double Fourier series.

Variables 2D spectral components

Stream function c:

Three components c5

2
4 24X1 sin(pax) sin(pz)

24X2 sin(pbx) sin(pz)
24X3 sin(pcx) sin(2pz)

3
5

Temperature u:

Four components

u5

2
64

4X4 cos(pax) sin(pz)
4X5 cos(pbx) sin(pz)
4X6 cos(pcx) sin(2pz)

4X7 sin(2pz)

3
75
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Saltzman 1962), whereas we adopted the representation

X1 to X7 for the amplitudes.

The following trigonometric arguments appear in the

spectral forms: pax, pbx, and pcx with a5 1/
ffiffiffi
2

p
,

b5 2
ffiffiffi
2

p
/3, and c5

ffiffiffi
2

p
/6 where they respectively ac-

count for three waves, four waves, and one wave over

the nondimensional 6
ffiffiffi
2

p
horizontal length of the do-

main, and the arguments pz and 2pz represent a half

wave and a full wave over the depth of fluid where

nondimensional depth to length ratio is 1/6
ffiffiffi
2

p
.

Substitution of the spectral forms of solution into

the Boussinesq equations in Table 4 leads to a set of

coupled ordinary differential equations governing

the spectral amplitudes. These equations and asso-

ciated coefficients are found in Tables 5 and 6. The

coefficients in Table 6 are expressed in terms of the

two nondimensional numbers associated with this

convection problem: Rayleigh number (l) and Prandtl

number (s). The Rayleigh number is expressed as a

constant l multiplying the critical Rayleigh number

in Saltzman’s development [5657.511 for this case

of two free boundaries as derived in Chandrasekhar

(1961) that followed Rayleigh’s pioneering develop-

ment in 1916)]. Saltzman set s 5 10 in his study and we

also set s 5 10 in our study, but only after we deter-

mined that the forecast sensitivity to s was much less

than sensitivity to l. Determination of the relative

forecast sensitivities to these parameters dictated our

derivation in terms of arbitrary values of the two

numbers.

In this study, the true control vector is taken to

be l 5 2 and Saltzman’s specified initial conditions.

The forecast control vector is taken to be l5 2.1 and

Saltzman’s specified initial conditions except for

temperature-departure amplitudeX4(0) that is taken

to be nondimensional number 0.1 instead of 0.0. It

is sufficient to choose the single amplitude initial

condition, different from true control, to reveal the

action of the variational data assimilation process on

correction of initial condition.

TABLE 4. Boussinesq equations. These governing equations neglect variations in density except where they modify the action of gravity

(Malkus and Veronis 1958; Chandrasekhar 1961, chapter 2).

Equations

›=2c/›t 5 2›(c, =2c)/›(x, z) 1 n=2c 1ga(›u/›x)

›u/›x 5 2›(c, u)/›(x, z) 1 (DT/H)(›c/›x) 1 k=2u

Explanation of terms

In the above equations c is the two-dimensional streamfunction and u the departure of temperature from base state. The fluid

velocity components u (x direction) and w (z direction) are given by (u, w)5 [2(›c/›z), ›c/›x], vorticity is given by =2c5 ›u/›z2
›w/›x, =4c5 =2(=2c) 5 ›4c/›x4 1 ›4c/›z4 1 2(›4c/›x2›z2), and the Jacobian ›(A, B)/›(x, z) 5 (›A/›x)(›B/›z) 2 (›A/›z)(›B/›x)

accounts for the fluid advection of vorticity and temperature when A 5 c and B 5 =2c or u.

TABLE 5. Saltzman’s (1962) model: SLOM (7) is _X5 f(X, a),
where X 2 R7, a 5 (l, s)T and f 5 ( f1, f2, . . . , f7)

T.

Components of f Their expressions

f1(X, a) C123X2X3 1 C140X4 1 C110X1

f2(X, a) C213X1X3 1 C250X5 1 C220X2

f3(X, a) C321X1X2 1 C360X6 1 C330X3

f4(X, a) C435X3X5 1 C426X2X6 1 C417X1X7

1 C410X1 1 C440X4

f5(X, a) C534X3X4 1 C516X1X6 1 C527X2X7

1 C520X2 1 C550X5

f6(X, a) C615X1X51C624X2X41C630X31C660X6

f7(X, a) C714X1X4 1 C725X2X5 1 C770X7

TABLE 6. Values of coefficients Cijk in Table 5.

C123 5 2p2[(2b 2 c)(c2 2 b2 1 3)/(a2 1 1)] 5 23.521

C140 5 2s[a/p(a2 1 1)] 5 20.15s

C110 5 2sp2(a2 1 1) 5 214.80s

C213 5 2p2[(2a 1 c)(a2 2 c2 2 3)/(b2 1 1)] 5 222.030

C250 5 2s[b/p(b2 1 1)] 5 20.159s

C220 5 2sp2(b2 1 1) 5 218.643s

C312 5 p2[(b 2 a)(a 1 b)2/(c2 1 4)] 5 1.561

C360 5 2s[c/p(c2 1 4)] 5 20.0185s

C330 5 2sp2(c2 1 4) 5 240.267s

C435 5 2p2(2b 2 c) 5 216.284

C426 5 2p2(2b 2 c) 5 216.284

C417 5 24p2a 5 227.916

C440 5 2p2(a2 1 1) 5 214.804

C410 5 2paRcl 5 1460.62l

C534 5 p2(2a 1 c) 5 16.284

C516 5 2p2(2a 1 c) 5 216.284

C527 5 24p2b 5 237.221

C520 5 2pbRcl 5 21947.508l

C550 5 2p2(b2 1 1) 5 218.643

C615 5 p2(a 1 b) 5 16.284

C624 5 p2(a 1 b) 5 16.284

C630 5 2pcRcl 5 2486.877l

C660 5 2p2(c2 1 4) 5 240.028

C714 5 2p2a 5 13.956

C725 5 2p2b 5 18.610

C770 5 24p2 5 239.479
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In addition to the spectral equations for convection

two sets of equations governing the forecast sensitivities

to control are derived, namely, equations governing

›Xi/›l, [›Xi/›X4(0)] i 5 1, 2, . . . , 7. Thus, there are 21

coupled equations where solutions toXi(t) equations are

coupled with the time evolution of the 14 sensitivity

equations but where the solutions to the sensitivity

equations do not feed back into the solutions to the

Xi(t) equations. The graphs of amplitude variation for

true and forecast control are shown in Fig. 10. Figures 11

and 12 show the (x, z) distribution of the true and

forecasted vertical velocity and temperature departure

variables (w, u) at t 5 0.65, the time when data assimi-

lation operates. Note that the phase for wavenumber

3 is reversed for true and forecasted states in Figs. 11

and 12, consistent with the time evolution of amplitudes

shown in Fig. 10.

4) THE EXPERIMENT

The forward operator H, a matrix of dimension 3 3 7

for this model, represents the spatial form of (u, w, u)

variables in the (x, z) space (refer to Table 7 for

details). When multiplied by the 7 3 1 time-

dependent amplitude matrix X 5 {X1, X2, . . . , X7}

of Fourier amplitudes, the three rows of the result-

ing matrix represent the (x, z, t) structure of the (u,

w, u) model variables—the state of convection in

space and time. When the H matrix is multiplied by

the F matrix, a 7 3 2 matrix of forecast sensitivities

(the two columns are amplitudes of the forecast

sensitivity to the initial condition X4(0) and

Rayleigh number (expressed in terms of l), respec-

tively, the result is a 3 3 2 matrix of the (x, z, t)

representation of the six sensitivity elements—the

separate first derivatives of the variables with re-

spect to the two control parameters. In matrix form,

HX is the state vector and HF is the sensitivity matrix.

The square of the sensitivity matrix, (HF)T(HF), is

the G matrix, and tr(G) is its trace.

The variational data assimilation process will take

place at t 5 0.65, that point in time where initial per-

turbations in the Fourier convective components have

started to grow significantly. The cost function J over

the (x, z) space at this time is also calculated. The

trace tr(G) is plotted in Fig. 13.5 A point at the max-

imum value of the tr(G) centroid near x 5 6.0 and

z 5 0.7 will be considered as the location of observa-

tions of (u, w, u)—the maximum is located at x5 5.802

and z 5 0.721.

FIG. 10. Time evolution of true and forecasted spectral amplitudes.

5 The graphic of the Frobenius norm has structure similar to

trace G but much greater magnitude. The relative difference in

magnitudes is not a factor in identifying locations where sensitiv-

ities are large.
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The two-component gradient of J, gradient of J with

respect to l and the gradient of J with respect to the

initial condition X4(0), is found by taking the deriv-

ative of the cost function with respect to these con-

trols separately. These derivatives can be calculated

easily since the variables’ sensitivity to control are

available from solution to the amplitude equations

discussed earlier. The structure of these two gradients

over the (x, z) space at t 5 0.65 is shown in Figs. 14

and 15.

The values of the gradients at the observation point

are ›J/[›X4(0)]5 4.893 993 105 and ›J/›l5 4.178 003
105. Thus, from the operating point in the space of

control [X4(0), l] 5 (0.1, 2.1), The negative gradient

of J is directed downward at an angle of 49.518 (slope of
1.17). With a step size of 0.150 along this direction, the

adjusted control is [DX4(0), Dl] 5 (20.097, 20.110),

close to the optimal adjustment where only a 58 dif-
ference exists between the two vectors. The adjusted

forecast control [DX4(0), l] 5 (0.003, 1.99), is very

close to true control.

In summary, the tr(G) structure identified points in

(x, z) space at t 5 0.65 that were likely to have large

values of the J gradient. When observations of the three

convection variables (two velocity components and the

temperature departure component) are placed at one of

the centroids of the G trace map, the gradients of the

cost function were found to be large and of roughly the

same magnitude. The direction of the negative gradient

was very close to the optimal direction. Examination of

the gradient maps in Figs. 14 and 15 makes it clear that

there are many locations for observation points [away

FIG. 11. The (x, z) distribution of (top) true vertical motion and (bottom) temperature

departure at t 5 0.65.
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from the centroids of tr(G)] that deliver gradients much

smaller and in directions that are not pointed toward the

J minimum compared to those associated with points

near centroids.

7. Discussion and conclusions

Whereas traditional 4D-Var is grounded on use of

the adjoint model to deliver the gradient of the cost

function—so-called adjoint sensitivity, the alternate

method developed here is founded on the role of

forecast sensitivity to control and an expression that

defines the forecast error in terms of observation error

and the model counterpart to observations. The sep-

arability of the influence of the model and observation

system as brought out in (4.1) on adjoint sensitiv-

ity presents a view that enriches the traditional view.

We want to emphasize that since the error f is not

known in advance, we use the fundamental relation in

(4.1) to decide on the placement of the observation as

described above.

The traditional 4D-Var method provides a computa-

tionally efficient framework for computing the adjoint

gradient for use in forecast error correction. Within

this classical framework, the prevailing practice is to

use different types of observations, without much

consideration to their optimal location. And as the

number of observations increases, computational

demands to assimilate them also increase. Our al-

ternate approach presents an off-time strategy

based on the forward sensitivity field in the control

space. By selectively placing observations where the

model exhibits large sensitivity, we can in fact in-

crease the effectiveness of the observations without

having to use many observations in the assimilation

process.

FIG. 12. The (x, z) distribution of (top) forecasted vertical motion and (bottom) temperature

departure at t 5 0.65.
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Our approach also clearly shows that it is not simply

the magnitude of the adjoint gradient, but its (orthogo-

nal) projection along the unknown control error vector

dc that is solely responsible for the reduction in the

forecast error. It is shown that the magnitude of this

projection is related to the inner product of the adjoint

sensitivity and the unknown error in the control vector.

This inner product is directly related to the Frobenius

norm of the forward sensitivity of the forecast with

respect to the initial conditions and parameters.

By examining variations of this norm in space and

time, and by placing the observations in locations

at or in the vicinity of the maxima of this norm,

the magnitude of the projection is increased. The

effectiveness of this approach has been demon-

strated with a one-dimensional air/sea interaction

model (time dependence alone) and a two-dimensional

model, Saltzman’s nonlinear model of Bénard (1900,

1901) convection in space and time. The richness of

Saltzman’s treatment of convection so faithful to the

work of Bénard and Rayleigh was a pedagogical tri-

umph, central to Ed Lorenz’s monumental study of

deterministic chaos, and central to our understanding

of the interplay between dynamics and observations

in data assimilation.

The strategy of choosing individual observations in

the vicinity of the Frobenius norm maxima is straight-

forward and logical, but a methodology that improves

the ‘‘granularity’’ (finer resolution) can be attained

by the following processes: 1) in the presence of an

inordinate number of Frobenius norm maxima, rank

order them in terms of the value of the maximum and

decide on a suitable number of observations, 2) ex-

amine the square of the norm of each of the n columns

of U against time and space and identify the maxima

in each field; then again by rank ordering these

maxima, decide on a suitable number of observations

to use, and 3) the finest level of granularity is attained

when we examine the variation of the square of each

of the (n 1 p) 3 m elements of U, identify and rank

order the maxima to come up with an acceptable

number of observations to use in the assimilation

scheme.

TABLE 7. Elements of the matrix H.

Row of H Matrix elements Values

First row H(1, 1) 4p sin(pax) cos(pz)

H(1, 2) 4p sin(pbx) cos(pz)

H(1, 3) 4p sin(pcx) cos(2pz)

H(1, 4) 0

H(1, 5) 0

H(1, 6) 0

H(1, 7) 0

Second row H(2, 1) 24pa cos(pax) sin(pz)

H(2, 2) 24pb cos(pbx) sin(pz)

H(2, 3) 24pc cos(pcx) sin(2pz)

H(2, 4) 0

H(2, 5) 0

H(2, 6) 0

H(2, 7) 0

Third row H(3, 1) 0

H(3, 2) 0

H(3, 3) 0

H(3, 4) 4 cos(pax) sin(pz)

H(3, 5) 4 cos(pbx) sin(pz)

H(3, 6) 4 cos(pcx) sin(2pz)

H(3, 7) 4 sin(2px)

FIG. 13. Trace of G in the (x, z) space at t 5 0.65.
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We hasten to add that the process of computing

the forward sensitivities involves solving time-

consuming matrix recurrence equations in (3.2) and

(3.3) where each step involves O(n3) operations

(See Lakshmivarahan et al. 2017). There are two av-

enues to conquer this computational challenge. First

is to invoke parallel implementation of the recur-

rence that defines the forward sensitivity dynamics

to gain speedup. A little reflection suggests that

Eqs. (3.2) and (3.3) admit ‘‘embarrassingly’’ parallel

implementations. Once the Jacobian of the forward

operators DM(k) in (3.2) are computed along the

forecast trajectory (which is a common denomina-

tor in all the adjoint based approaches), we can split

the matrix–matrix recurrence in (3.2) into a system of

n matrix–vector recurrences split across the n columns

of U(k) and implement each of these matrix–vector

recurrences in parallel requiringO(n2) operations per

iteration. Using this approach, computation time for

this parallel implementation would indeed match

that of running the tangent linear system. The second

idea is to consider a multiscale, multigrid approach

wherein we use a relatively small-sized coarse grid to

compute the forward sensitivity matrices that are

critical to decide on the location and the number of

observations. Then use a finer-scale grid to assimilate

the observation. Of course, we also have a choice to

hybridize the multiscale, multigrid approach with par-

allel computing to make the overall process computa-

tionally feasible.

FIG. 14. The cost function gradient with respect to initial condition at t 5 0.65.

FIG. 15. The cost function gradient with respect to l at t 5 0.65.
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APPENDIX A

Dependence of kĝk on the Spectral
Properties of G5FTHF

In this appendix we explore the effectiveness of an

observation by analyzing the intrinsic dependence of the

projected component, ĝ of the adjoint gradient g 5 Gf

along the control error vector f 5 dc. We start by en-

listing some of the key properties of the linear trans-

formation defined by G.

Property A1: Referring to the developments in

section 3 and appendix B, it follows that matrix G is a

Gramian and is given by

G5FTHF5FTF 2 R(n1p)3(n1p) (A.1)

and is an SPSD (Meyer 2000).

Property A2: Since G is SPSD, the inner product of f

and g is nonnegative. It follows from the definition of

SPSD (Meyer 2000) that

hf, gi5 hf,Gfi5 fTGf5 kfk2(f̂TGf̂)$ 0, (A.2)

where f̂5 f/kfk is the unit vector in the direction of f.

Property A3: Referring to chapter 6 in Lewis et al.

(2006), the orthogonal projection matrix Pf along the

span of the vector f is given by

P
f
5 f(fTf)

21
fT 5

ffT

kfk2 5 f̂ f̂T . (A.3)

Property A4: The orthogonal projection ĝ of g along f

is given by Lewis et al. (2006, chapter 6)

ĝ5P
f
g5 f̂ f̂Tg5 f̂ f̂T(Gf)5 f(f̂TGf̂) . (A.4)

Property A5: Since f and f̂ are fixed, the properties of

the scalar

V(G)5 f̂TGf̂ (A.5)

called the Rayleigh coefficient (Meyer 2000) depends crit-

ically on the spectral expansion of the SPSD matrix G.

Property A6: Since G is SPSD, the spectral expansion

of G is given by (Meyer 2000)

G5QDQT , (A.6)

where Q and D are the matrices of eigenvectors and

eigenvalues of G, respectively, where QQT 5 QTQ 5
In1p. Substituting (A.6) in (A.5) and define

y5QT f̂ , (A.7)

we get

V(G)5 f̂TGf̂5 f̂T(QDQT)f̂5 yTDy5�
i

d
i
y2i , (A.8)

where y is a unit vector since

kyk2 5 yTy5 f̂T(QQT)f̂5 f̂T f̂5 kfk2 5 1 . (A.9)

Stated in other words, the components of y are the

coordinates of the unit vector f̂ in the new orthogonal

coordinate system formed by the columns of Q.

In view of (A.9), the Rayleigh coefficient V(G) has

natural interpretation as the weighted average of the

eigenvalues of G.

Property A7: Using (A.2) in (A.4), we obtain another

natural expression for the projection ĝ as

ĝ5 f
hf, gi
kfk2 5 f̂hf̂, gi. (A.10)

A geometric view of the relation between f, g, and ĝ is given

in Fig. 1. Referring to Fig. 1, we can resolve g as a sum:

g5 ĝ1 g? , (A.11)

where ĝ is the orthogonal projection of g onto f

and g? 5 g2 ĝ.

The overall effectiveness of the forecast error correc-

tion strategy depends critically on ĝ through the length,

kĝk. Clearly, referring to Fig. 1, we can maximize kĝk by

maximizing kĝk and minimizing angel u between f and g

that is equivalent to maximizing the inner product hf, gi.
Property A8: Combining the eigen decomposition of

G in (A.6) with (A.2) and (A.7), we get the following

new expression:

g5Gf5 (QDQT)f5 kfk(QD)QT f̂5 kfk(QD)y .

(A.12)
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Consequently,

kgk2 5 gTg5 kfk2yTD(QTQ)Dy

5 kfk2yTD2y5 kfk2�
i

d2
i y

2
i , (A.13)

where the second factor on the right-hand side of (A.13)

is the weighted average of the squares of the eigenvalues

of G.

Property A9: Combining (A.4), (A.6), and (A.9), we

get an expression for ĝ:

ĝ5 f(f̂TGf̂)5 f [̂fT(QDQT)f̂]5 f(yTDy) . (A.14)

Hence,

kĝk2 5 ĝTĝ5 kfk2(yTDy)2 5 kfk2
�
�
i

d
i
y2i

�2

, (A.15)

where the second factor on the right-hand side of

(A.15) is the square of the weighted average of the ei-

genvalues of G.

Property A10: Considering fy2i g as the discrete prob-

ability distribution over di, define

d5�
i

d
i
y2i . (A.16)

Then, from

0#�
i

(d
i
2 d)2y2i 5�

i

d2
i y

2
i 2 d2 , (A.17)

we obtain the natural inequality:

kgk2 $ kĝk2 , (A.18)

which states that the length of the vector g is always

greater than or equal to its orthogonal projection ĝ.

The above analysis naturally leads to the following

inescapable conclusions:

Property A11: Increasing kĝ k has an immediate con-

sequence of (i) increasing the effectiveness of the fore-

cast error correction process and (ii) it increases jjgjj,
which in turn controls the shape of the cost functional

J(c) by avoiding flat patches. Hence, the reason for the

title of the paper.

As a prelude to increasing kĝ k from (A.15) first ob-

serve that for a given fixed f,

kĝk
kfk5�

i

d
i
y2i $min

y2
i
6¼ 0

fy2i g
�
�
i

d
i

�
. (A.19)

From (A.6), exploiting the properties of the trace of

product matrices (Meyer 2000), it can be verified that

tr(G)5 tr(QDQT)5 tr(D)5�
i

d
i
5 tr(FTF)

5 kFk2F 5�
j

kF*jk
2 , (A.20)

where jjAjjF denotes the Frobenius norm of (Meyer

2000) A. Hence, by placing observations where the

Frobenius norm of the forward sensitivity matrix F is a

maximum, we can achieve the twin objective stated in

the property A11.

Property A12: From remark 4.1, it is immediate that

the matrix G is also the Hessian of J(c) at the mini-

mum c.

Clearly, the condition number ofG controls the shape

of the cost functional J(c) around its minimum.

APPENDIX B

Factorization of G5FTHF

Recall from (3.14) that G5FTHF, where F 5 [U, V]

and H5DT
h (k)R

21Dh(k). It is assumed that the noise

covariancematrixR (and henceR21) is SPD.Accordingly,

we can expressR21 as the product of its Cholesky factors

(Lewis et al. 2006, chapter 9) as

R21 5S
T
S , (B.1)

where S is an upper triangular matrix.

Substituting, we obtain the Gramian structure

G5FTHF5 (FTDT
hS

T
)(SD

h
F)5FTF , (B.2)

where F5 SDh(k)F.

In the first special case when F 5 U (which occurs

when da 5 0), we get

G5UTHU5 (UTDT
hS

T
)(SD

h
U)5UTU , (B.3)

where U5 SDh(k)U.

In the second special case when F 5 V [which occurs

when dx(0) 5 0], we get

G5VTHV5 (VTDT
hS

T
)(SD

h
V)5VTV , (B.4)

where V5 SDh(k)V.

APPENDIX C

A Comparative Analysis

By way of comparing our approach with those in the

adjoint sensitivity literature, we consider the adjoint

sensitivity relation given in Eq. (8) in AH2007.
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Solving Eq. (3.2) in this paper, it can be verified that

the forward sensitivity matrix U(k) given by

U(k)5D
M
(k2 1)D

M
(k2 2) . . . D

M
(1)D

M
(0)

5D
M
(k2 1: 0) (C.1)

is indeed the same as resolvent R(k2 1, 0) in the Eq. (2)

in AH2007. Consequently, Eq. (2) in AH2007, in our

notation, takes the form

dx(k)5U(k)dx(0) . (C.2)

The induced first variation dJ in J. is then given by

dJ5 J[x(k)1 dx(k)]2 J[x(k)]5 h=
x(k)

J, dx(k)i, (C.3)

where =x(k)J 2 Rn is the gradient of J[x(k)] with respect

to x(k)

Combining (C.2) and (C.3) and using the adjoint

property, from first principles it follows that the adjoint

gradient is given by

=
x(0)

J5UT(k)=
x(k)

J , (C.4)

which is Eq. (8) in AH2007.

The analysis in AH2007 then proceeds to esti-

mating the adjoint gradient using an ensemble ap-

proach. This is accomplished by building a linear

regression between the ensemble of induced first

variations {dJij1 # i # M} and the ensemble of the

first variation in the initial conditions {dxi(0)j1# i#M},

where M is the ensemble size. For further details, refer

to AH2007.

However, in this paper we take the basic relation

in (C.4) a step further by explicitly estimating =x(k)J.

From the structure of J(c) in Eq. (2.6) of this paper, it

can be verified that

2=
x(k)

J5DT
h (k)R

21e(k)

5DT
h (k)R

21fz(k)2 h[x(k)]g
5DT

h (k)R
21fh[x(k)]2 h[x(k)]g

5DT
h (k)R

21D
h
(k)dx(k)

5 [DT
h (k)R

21D
h
(k)]U(k)dx(0) . (C.5)

Substituting Eq. (C.5) into (C.4), we get

2=
x(0)

J5UT(k)[DT
h (k)R

21D
h
(k)]U(k)dx(0)5Gdx(0) ,

(C.6)

which is the equation in (4.1) for the special case when

x(0) is varied and a is held constant.

It is important to note that while all papers related to

adjoint sensitivity analysis in the literature consider

sensitivity only with respect to initial conditions, our

work simultaneously deals sensitivity with respect to

both initial conditions and parameters on the same

footing.
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